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𝑂𝑛𝑒 𝑔𝑒𝑛𝑒𝑟𝑎𝑙 𝑙𝑎𝑤, 𝑙𝑒𝑎𝑑𝑖𝑛𝑔 𝑡𝑜 𝑡ℎ𝑒 𝑎𝑑𝑣𝑎𝑛𝑐𝑒𝑚𝑒𝑛𝑡 𝑜𝑓 𝑎𝑙𝑙 𝑜𝑟𝑔𝑎𝑛𝑖𝑐 𝑏𝑒𝑖𝑛𝑔𝑠, 𝑛𝑎𝑚𝑒𝑙𝑦,

𝑚𝑢𝑙𝑡𝑖𝑝𝑙𝑦, 𝑣𝑎𝑟𝑦, 𝑙𝑒𝑡 𝑡ℎ𝑒 𝑠𝑡𝑟𝑜𝑛𝑔𝑒𝑠𝑡 𝑙𝑖𝑣𝑒 𝑎𝑛𝑑 𝑡ℎ𝑒𝑤𝑒𝑎𝑘𝑒𝑠𝑡 𝑑𝑖𝑒.

−𝐶ℎ𝑎𝑟𝑙𝑒𝑠𝐷𝑎𝑟𝑤𝑖𝑛, 𝑂𝑛 𝑡ℎ𝑒𝑂𝑟𝑖𝑔𝑖𝑛 𝑜𝑓 𝑆𝑝𝑒𝑐𝑖𝑒𝑠 (1859)

gplearn implements Genetic Programming in Python, with a scikit-learn inspired and compatible API.

While Genetic Programming (GP) can be used to perform a very wide variety of tasks, gplearn is purposefully
constrained to solving symbolic regression problems. This is motivated by the scikit-learn ethos, of having powerful
estimators that are straight-forward to implement.

Symbolic regression is a machine learning technique that aims to identify an underlying mathematical expression that
best describes a relationship. It begins by building a population of naive random formulas to represent a relationship
between known independent variables and their dependent variable targets in order to predict new data. Each successive
generation of programs is then evolved from the one that came before it by selecting the fittest individuals from the
population to undergo genetic operations.

gplearn retains the familiar scikit-learn fit/predict API and works with the existing scikit-learn pipeline and grid
search modules. You can get started with gplearn as simply as:

est = SymbolicRegressor()
est.fit(X_train, y_train)
y_pred = est.predict(X_test)

However, don’t let that stop you from exploring all the ways that the evolution can be tailored to your problem. The
package attempts to squeeze a lot of functionality into a scikit-learn-style API. While there are a lot of parameters to
tweak, reading the documentation here should make the more relevant ones clear for your problem.

gplearn supports regression through the SymbolicRegressor, binary classification with the
SymbolicClassifier, as well as transformation for automated feature engineering with the SymbolicTransformer,
which is designed to support regression problems, but should also work for binary classification.

gplearn is built on scikit-learn and a fairly recent copy (0.22.1+) is required for installation. If you come across any
issues in running or installing the package, please submit a bug report.

CONTENTS 1

http://scikit-learn.org
http://www.genetic-programming.org/combined.php
https://scikit-learn.org/stable/modules/compose.html
http://scikit-learn.org/stable/modules/grid_search.html
http://scikit-learn.org/stable/modules/grid_search.html
https://github.com/trevorstephens/gplearn/issues
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Next up, read some more details about what Genetic Programming is, and how it works. . .

Contents:

2 CONTENTS



CHAPTER

ONE

INTRODUCTION TO GP

𝑂𝑤𝑖𝑛𝑔 𝑡𝑜 𝑡ℎ𝑖𝑠 𝑠𝑡𝑟𝑢𝑔𝑔𝑙𝑒 𝑓𝑜𝑟 𝑙𝑖𝑓𝑒,

𝑎𝑛𝑦 𝑣𝑎𝑟𝑖𝑎𝑡𝑖𝑜𝑛, ℎ𝑜𝑤𝑒𝑣𝑒𝑟 𝑠𝑙𝑖𝑔ℎ𝑡 𝑎𝑛𝑑 𝑓𝑟𝑜𝑚𝑤ℎ𝑎𝑡𝑒𝑣𝑒𝑟 𝑐𝑎𝑢𝑠𝑒 𝑝𝑟𝑜𝑐𝑒𝑒𝑑𝑖𝑛𝑔,

𝑖𝑓 𝑖𝑡 𝑏𝑒 𝑖𝑛 𝑎𝑛𝑦 𝑑𝑒𝑔𝑟𝑒𝑒 𝑝𝑟𝑜𝑓𝑖𝑡𝑎𝑏𝑙𝑒 𝑡𝑜 𝑎𝑛 𝑖𝑛𝑑𝑖𝑣𝑖𝑑𝑢𝑎𝑙 𝑜𝑓 𝑎𝑛𝑦 𝑠𝑝𝑒𝑐𝑖𝑒𝑠,

𝑖𝑛 𝑖𝑡𝑠 𝑖𝑛𝑓𝑖𝑛𝑖𝑡𝑒𝑙𝑦 𝑐𝑜𝑚𝑝𝑙𝑒𝑥 𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛𝑠 𝑡𝑜 𝑜𝑡ℎ𝑒𝑟 𝑜𝑟𝑔𝑎𝑛𝑖𝑐 𝑏𝑒𝑖𝑛𝑔𝑠 𝑎𝑛𝑑 𝑡𝑜 𝑒𝑥𝑡𝑒𝑟𝑛𝑎𝑙 𝑛𝑎𝑡𝑢𝑟𝑒,

𝑤𝑖𝑙𝑙 𝑡𝑒𝑛𝑑 𝑡𝑜 𝑡ℎ𝑒 𝑝𝑟𝑒𝑠𝑒𝑟𝑣𝑎𝑡𝑖𝑜𝑛 𝑜𝑓 𝑡ℎ𝑎𝑡 𝑖𝑛𝑑𝑖𝑣𝑖𝑑𝑢𝑎𝑙,

𝑎𝑛𝑑𝑤𝑖𝑙𝑙 𝑔𝑒𝑛𝑒𝑟𝑎𝑙𝑙𝑦 𝑏𝑒 𝑖𝑛ℎ𝑒𝑟𝑖𝑡𝑒𝑑 𝑏𝑦 𝑖𝑡𝑠 𝑜𝑓𝑓𝑠𝑝𝑟𝑖𝑛𝑔.

−𝐶ℎ𝑎𝑟𝑙𝑒𝑠𝐷𝑎𝑟𝑤𝑖𝑛, 𝑂𝑛 𝑡ℎ𝑒𝑂𝑟𝑖𝑔𝑖𝑛 𝑜𝑓 𝑆𝑝𝑒𝑐𝑖𝑒𝑠 (1859)

gplearn extends the scikit-learn machine learning library to perform Genetic Programming (GP) with symbolic re-
gression.

Symbolic regression is a machine learning technique that aims to identify an underlying mathematical expression that
best describes a relationship. It begins by building a population of naive random formulas to represent a relationship
between known independent variables and their dependent variable targets in order to predict new data. Each successive

3
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generation of programs is then evolved from the one that came before it by selecting the fittest individuals from the
population to undergo genetic operations.

Genetic programming is capable of taking a series of totally random programs, untrained and unaware of any given
target function you might have had in mind, and making them breed, mutate and evolve their way towards the truth.

Think of genetic programming as a stochastic optimization process. Every time an initial population is conceived, and
with every selection and evolution step in the process, random individuals from the current generation are selected
to undergo random changes in order to enter the next. You can control this randomness by using the random_state
parameter of the estimator.

So you’re skeptical. I hope so. Read on and discover the ways that the fittest programs in the population interact with
one another to yield an even better generation.

1.1 Representation

As mentioned already, GP seeks to find a mathematical formula to represent a relationship. Let’s use an arbitrary
relationship as an example for the different ways that this could be written. Say we have two variables X0 and X1 that
interact as follows to define a dependent variable y:

𝑦 = 𝑋2
0 − 3×𝑋1 + 0.5

This could be re-written as:

𝑦 = 𝑋0 ×𝑋0 − 3×𝑋1 + 0.5

Or as a LISP symbolic expression (S-expression) representation which uses prefix-notation, and happens to be very
common in GP, as:

𝑦 = (+(−(×𝑋0𝑋0)(×3𝑋1))0.5)

Or, since we’re working in python here, let’s express this as a numpy formula:

y = np.add(np.subtract(np.multiply(X0, X0), np.multiply(3., X1)), 0.5)

In each of these representations, we have a mix of variables, constants and functions. In this case we have the functions
addition, subtraction, and multiplication. We also have the variables𝑋0 and𝑋1 and constants 3.0 and 0.5. Collectively,
the variables and constants are known as terminals. Combined with the functions, the collection of available variables,
constants and functions are known as the primitive set.

We could also represent this formula as a syntax tree, where the functions are interior nodes, shown in dark blue, and
the variables and constants make up the leaves (or terminal nodes), shown in light blue:

4 Chapter 1. Introduction to GP
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Now you can see that the formula can be interpreted in a recursive manner. If we start with the left-hand leaves, we
multiply 𝑋0 and 𝑋0 and that portion of the formula is evaluated by the subtraction operation (once the 𝑋1×3.0 portion
is also evaluated). The result of the subtraction is then evaluated by the addition operation as we work up the syntax
tree.

Importantly for GP the𝑋0×𝑋0 sub-expression, or sub-tree, can be replaced by any other valid expression that evaluates
to a numerical answer, even if that is a constant. That sub-expression, and any larger one such as everything below
the subtraction function, all reside adjacent to one another in the list-style representation, making replacement of these
segments simple to do programatically.

A function has a property known as its arity. Arity, in a python functional sense, refers to the number of arguments that
the function takes. In the cases above, all of the functions require two arguments, and thus have an arity of two. But
other functions such as np.abs(), only require a single argument, and have an arity of 1.

Since we know the arity of all the available functions in our function set, we can actually simplify the S-expression and
remove all of the parentheses:

𝑦 = +−×𝑋0𝑋0 × 3𝑋10.5

This could then be evaluated recursively, starting from the left and holding onto a stack which keeps track of how much
cumulative arity needs to be satisfied by the terminal nodes.

Under the hood, gplearn’s representation is similar to this, and uses Python lists to store the functions and terminals.
Constants are represented by floating point numbers, variables by integers and functions by a custom Function object.

In gplearn, the available function set is controlled by an argument that is set when initializing an estimator. The
default set is the arithmetic operators: addition, subtraction, division and multiplication. But you can also add in
some transformers, comparison functions or trigonometric functions that are all built-in. These strings are put into the
function_set argument to include them in your programs.

• ‘add’ : addition, arity=2.

• ‘sub’ : subtraction, arity=2.

• ‘mul’ : multiplication, arity=2.

1.1. Representation 5
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• ‘div’ : division, arity=2.

• ‘sqrt’ : square root, arity=1.

• ‘log’ : log, arity=1.

• ‘abs’ : absolute value, arity=1.

• ‘neg’ : negative, arity=1.

• ‘inv’ : inverse, arity=1.

• ‘max’ : maximum, arity=2.

• ‘min’ : minimum, arity=2.

• ‘sin’ : sine (radians), arity=1.

• ‘cos’ : cosine (radians), arity=1.

• ‘tan’ : tangent (radians), arity=1.

You should choose whether these functions are valid for your program.

You can also set up your own functions by using the functions.make_function() factory function which will create
a gp-compatible function node that can be incorporated into your programs. See advanced use here.

1.2 Fitness

Now that we can represent a formula as an executable program, we need to determine how well it performs. In a
throwback to Darwin, in GP this measure is called a program’s fitness. If you have used machine learning before, you
may be more familiar with terms such as “score”, “error” or “loss”. It’s basically the same thing, and as with those
other machine learning terms, in GP we have to know whether the metric needs to be maximized or minimized in order
to be able to select the best program in a group.

In gplearn, several metrics are available by setting the metric parameter.

For the SymbolicRegressor several common error metrics are available and the evolution process seeks to minimize
them. The default is the magnitude of the error, ‘mean absolute error’. Other metrics available are:

• ‘mse’ for mean squared error, and

• ‘rmse’ for root mean squared error.

For the SymbolicTransformer, where indirect optimization is sought, the metrics are based on correlation between
the program’s output and the target, these are maximized by the evolution process:

• ‘pearson’, for Pearson’s product-moment correlation coefficient (the default), and

• ‘spearman’ for Spearman’s rank-order correlation coefficient.

These two correlation metrics are also supported by the SymbolicRegressor, though their output will not directly
predict the target; they are better used as a value-added feature to a second-stage estimator. Both will equally prefer
strongly positively or negatively correlated predictions.

The SymbolicClassifier currently uses the ‘log loss’ aka binary cross-entropy loss as its default metric to optimise.

You can also set up your own fitness measures by using the fitness.make_fitness() factory function which will
create a gp-compatible fitness function that can be used to evaluate your programs. See advanced use here.

Evaluating the fitness of all the programs in a population is probably the most expensive part of GP. In gplearn, you
can parallelize this computation by using the n_jobs parameter to choose how many cores should work on it at once.
If your dataset is small, the overhead of splitting the work over several cores is probably more than the benefit of the

6 Chapter 1. Introduction to GP



gplearn Documentation, Release 0.4.2

reduced work per core. This is because the work is parallelized per generation, so use this only if your dataset is large
and the fitness calculation takes a long time.

1.3 Closure

We have already discussed that the measure of a program’s fitness is through some function that evaluates the program’s
predictions compared to some ground truth. But with functions like division in the function set, what happens if your
denominator happens to be close to zero? In the case of zero division, or near-zero division in a computer program, the
result happens to be an infinite quantity. So there goes your error for the entire test set, even if all other fitness samples
were evaluated almost perfectly!

Thus, a critical component of rugged GP becomes apparent: we need to protect against such cases for functions that
might break for certain arguments. Functions like division must be modified to be able to accept any input argument
and still return a valid number at evaluation so that nodes higher up the tree can successfully evaluate their output.

In gplearn, several protected functions are used:

• division, if the denominator lies between -0.001 and 0.001, returns 1.0.

• square root returns the square root of the absolute value of the argument.

• log returns the logarithm of the absolute value of the argument, or for very small values less than 0.001, it returns
0.0.

• inverse, if the argument lies between -0.001 and 0.001, returns 0.0.

In this way, no matter the value of the input data or structure of the evolved program, a valid numerical output can be
guaranteed, even if we must sacrifice some interpretability to get there.

If you define your own functions, you will need to guard for this as well. The functions.make_function() factory
function will perform some basic checks on your function to ensure it will guard against the most common invalid
operations with negative or near-zero operations.

1.4 Sufficiency

Another requirement of a successful GP run is called sufficiency. Basically, can this problem be solved to an adequate
degree with the functions and variables available (i.e., are the functions and inputs sufficient for the given problem).

For toy symbolic regression tasks, like that solved in example 1, this is easy to ascertain. But in real life, things are
less easy to quantify. It may be that there is a good solution lurking in the given multi-dimensional space, but there
were insufficient generations evolved, or bad luck turned the evolution process in the wrong direction. It may also be
possible that no good relationship can be found through symbolic combinations of your variables.

In practice, try to set the constant range to a value that will be helpful to get close to the target. For example, if you are
trying to regress on a target with values from 500 – 1000 using variables in a range of 0 – 1, a constant of 0.5 is unlikely
to help, and the “best” solution is probably just going to be large amounts of irrelevant additions to try and get close to
the lower bound. Similarly, standardizing or scaling your variables and targets can make the problem much easier to
learn in some cases.

If you are using trigonometric functions, make sure all angles are measured in radians and that these functions are
useful for your problem. (Do you expect inputs to have a periodic or oscillatory effect on the target? Perhaps temporal
variables have a seasonal effect?)

If you think that the problem requires a very large formula to solve, start with a larger program depth. And if your dataset
has many variables, perhaps the “full” initialization method (initializing the population with full-size programs) makes
more sense than waiting for programs to grow large enough to make use of all variables.

1.3. Closure 7
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1.5 Initialization

When starting a GP run, the first generation is blissfully unaware that there is any fitness function that needs to be max-
imized. These naive programs are a random mix of the available functions and variables and will generally perform
poorly. But the user might be able to “strengthen” the initial population by providing good initialization parameters.
While these parameters may be of some help, bear in mind that one of the most significant factors impacting perfor-
mance is the number of features in your dataset.

The first parameter to look at is the init_depth of the programs in the first generation. init_depth is a tuple of two
integers which specify the range of initial depths that the first generation of programs can have. (Though, depending
on the init_method used, first generation programs may be smaller than this range specifies; see below for more
information.) Each program in the first generation is randomly assigned a depth from this range, and this range only
applies to the first generation. The default range of 2 – 6 is generally a good starting point, but if your dataset has many
variables, you may want to shift the range to the right so that the first generation contains larger programs.

Next, you should consider population_size. This controls the number of programs competing in the first generation
and every generation thereafter. If you have very few variables, and have a limited function set, a smaller population
size may suffice. If you have a lot of variables, or expect a very large program is required, you may want to start with
a larger population. More likely, the number of programs you wish to maintain will be constrained by the amount of
time you want to spend evaluating them.

Finally, you need to decide on the init_method appropriate for your data. This can be one of 'grow', 'full', or
'half and half'. For all options, the root node must be a function (as opposed to a variable or a constant).

For the 'grow' method, nodes are chosen at random from both functions and terminals, allowing for smaller trees
than init_depth specifies. This tends to grow asymmetrical trees as terminals can be chosen before the max depth
is reached. If your dataset has a lot of variables, this will likely result in much smaller programs than init_depth
specifies. Similarly, if you have very few variables and have chosen a large function set, you will likely see programs
approaching the maximum depth specified by init_depth.

The 'full'method chooses nodes from the function set until the max depth is reached, and then terminals are chosen.
This tends to grow “bushy”, symmetrical trees.

The default is the 'half and half' method. Program trees are grown through a 50/50 mix of 'full' and 'grow'
(i.e., half the population has init_method set to 'full', and the other half is set to 'grow'). This makes for a mix
of tree shapes in the initial population.

1.6 Selection

Now that we have a population of programs, we need to decide which ones will get to evolve into the next generation.
In gplearn this is done through tournaments. From the population, a smaller subset is selected at random to compete,
the size of which is controlled by the tournament_size parameter. The fittest individual in this subset is then selected
to move on to the next generation.

Having a large tournament size will generally find fitter programs more quickly and the evolution process will tend to
converge to a solution in less time. A smaller tournament size will likely maintain more diversity in the population
as more programs are given a chance to evolve and the population may find a better solution at the expense of taking
longer. This is known as selection pressure, and your choice here may be governed by the computation time.
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1.7 Evolution

As discussed in the selection section, we use the fitness measure to find the fittest individual in the tournament to survive.
But this individual does not just graduate unaltered to the next generation: first, genetic operations are performed on
them. Several common genetic operations are supported by gplearn.

Crossover

Crossover is the principle method of mixing genetic material between individuals and is controlled by the p_crossover
parameter. Unlike other genetic operations, it requires two tournaments to be run in order to find a parent and a donor.

Crossover takes the winner of a tournament and selects a random subtree from it to be replaced. A second tournament
is performed to find a donor. The donor also has a subtree selected at random and this is inserted into the original
parent to form an offspring in the next generation.

Subtree Mutation

Subtree mutation is one of the more aggressive mutation operations and is controlled by the p_subtree_mutation
parameter. The reason it is more aggressive is that more genetic material can be replaced by totally naive random
components. This can reintroduce extinct functions and operators into the population to maintain diversity.

Subtree mutation takes the winner of a tournament and selects a random subtree from it to be replaced. A donor subtree
is generated at random and this is inserted into the parent to form an offspring in the next generation.

Hoist Mutation

Hoist mutation is a bloat-fighting mutation operation. It is controlled by the p_hoist_mutation parameter. The sole
purpose of this mutation is to remove genetic material from tournament winners.

Hoist mutation takes the winner of a tournament and selects a random subtree from it. A random subtree of that subtree
is then selected and this is “hoisted” into the original subtree’s location to form an offspring in the next generation.

1.7. Evolution 9
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Point Mutation

Point mutation is probably the most common form of mutation in genetic programming. Like subtree mutation, it can
also reintroduce extinct functions and operators into the population to maintain diversity.

Point mutation takes the winner of a tournament and selects random nodes from it to be replaced. Terminals are
replaced by other terminals and functions are replaced by other functions that require the same number of arguments
as the original node. The resulting tree forms an offspring in the next generation.

Functions and terminals are randomly chosen for replacement as controlled by the p_point_replace parameter which
guides the average amount of replacement to perform.

Reproduction

Should the sum of the above genetic operations’ probabilities be less than one, the balance of genetic operations shall
fall back on reproduction. That is, a tournament winner is cloned and enters the next generation unmodified.

1.8 Termination

There are two ways that the evolution process will stop. The first is that the maximum number of generations, controlled
by the parameter generations, is reached. The second way is that at least one program in the population has a fitness
that exceeds the parameter stopping_criteria, which defaults to being a perfect score. You may need to do a
couple of test runs to determine what metric is possible if you are working with real-life data in order to set this value
appropriately.
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1.9 Bloat

A program’s size can be measured in two ways: its depth and length. The depth of a program is the distance from its
root node to the furthest leaf node. A degenerative program with only a single value (i.e., y = X0) has a depth of zero.
The length of a program is the number of elements in the formula which is equal to the total number of nodes.

An interesting phenomenon is often encountered in GP where the program sizes grow larger and larger with no signifi-
cant improvement in fitness. This is known as bloat and leads to longer and longer computation times with little benefit
to the solution.

Bloat can be fought in gplearn in several ways. The principle weapon is using a penalized fitness measure during
selection where the fitness of an individual is made worse the larger it is. In this way, should there be two programs
with identical fitness competing in a tournament, the smaller program will be selected and the larger one discarded.
The parsimony_coefficient parameter controls this penalty and may need to be experimented with to get good
performance. Too large a penalty and your smallest programs will tend to be selected regardless of their actual perfor-
mance on the data, too small and bloat will continue unabated. The final winner of the evolution process is still chosen
based on the unpenalized fitness, otherwise known as its raw fitness.

A recent paper introduced the covariant parsimony method which can be used by setting
parsimony_coefficient='auto'. This method adapts the penalty depending on the relationship between
program fitness and size in the population and will change from generation to generation.

Another method to fight bloat is by using genetic operations that make programs smaller. gplearn provides hoist
mutation which removes parts of programs during evolution. It can be controlled by the p_hoist_mutation parameter.

Finally, you can increase the amount of subsampling performed on your data to get more diverse looks at individual
programs from smaller portions of the data. max_samples controls this rate and defaults to no subsampling. As a
bonus, if you choose to subsample, you also get to see the “out of bag” fitness of the best program in the verbose
reporter (activated by setting verbose=1). Hopefully this is pretty close to the in-sample fitness that is also reported.

1.10 Classification

The SymbolicClassifier works in exactly the same way as the SymbolicRegressor in how the evolution takes
place. The only difference is that the output of the program is transformed through a sigmoid function in order to
transform the numeric output into probabilities of each class. In essence this means that a negative output of a function
means that the program is predicting one class, and a positive output predicts the other.

Note that the sigmoid function is not considered when evaluating the depth or length of the program, ie. the size of the
programs and thus the behaviour of bloat reduction measures are equivalent to those in the regressor.

1.11 Transformer

The SymbolicTransformer works slightly differently to the SymbolicRegressor. While the regressor seeks to
minimize the error between the programs’ outputs and the target variable based on an error metric, the transformer
seeks an indirect relationship that can then be exploited by a second estimator. Essentially, this is automated feature
engineering and can create powerful non-linear interactions that may be difficult to discover in conventional methods.

Where the regressor looks to minimize the direct error, the transformer looks to maximize the correlation between
the predicted value and the target. This is done through either the Pearson product-moment correlation coefficient
(the default) or the Spearman rank-order correlation coefficient. In both cases the absolute value of the correlation is
maximized in order to accept strongly negatively correlated programs.

1.9. Bloat 11
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The Spearman correlation is appropriate if your next estimator is going to be tree-based, such as a Random Forest or
Gradient Boosting Machine. If you plan to send the new transformed variables into a linear model, it is probably better
to stick with the default Pearson correlation.

The SymbolicTransformer looks at the final generation of the evolution and picks the best programs to evaluate.
The number of programs it will look at is controlled by the hall_of_fame parameter.

From the hall of fame, it will then whittle down the best programs to the least correlated amongst them as controlled
by the n_components parameter. You may have the top two programs being almost identical, so this step removes
that issue. The correlation between individuals within the hall of fame uses the same correlation method, Pearson or
Spearman, as used by the evolution process.

Convinced?

See some examples, explore the full API reference and install the package!
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TWO

EXAMPLES

The code used to generate these examples can be found here as an iPython Notebook.

2.1 Symbolic Regressor

This example demonstrates using the SymbolicRegressor to fit a symbolic relationship.

Let’s create some synthetic data based on the relationship 𝑦 = 𝑋2
0 −𝑋2

1 +𝑋1 − 1:

x0 = np.arange(-1, 1, 1/10.)
x1 = np.arange(-1, 1, 1/10.)
x0, x1 = np.meshgrid(x0, x1)
y_truth = x0**2 - x1**2 + x1 - 1

ax = plt.figure().add_subplot(projection='3d')
ax.set_xlim(-1, 1)
ax.set_ylim(-1, 1)
surf = ax.plot_surface(x0, x1, y_truth, rstride=1, cstride=1,

color='green', alpha=0.5)
plt.show()
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We can create some random training and test data that lies on this surface too:

rng = check_random_state(0)

# Training samples
X_train = rng.uniform(-1, 1, 100).reshape(50, 2)
y_train = X_train[:, 0]**2 - X_train[:, 1]**2 + X_train[:, 1] - 1

# Testing samples
X_test = rng.uniform(-1, 1, 100).reshape(50, 2)
y_test = X_test[:, 0]**2 - X_test[:, 1]**2 + X_test[:, 1] - 1

Now let’s consider how to fit our SymbolicRegressor to this data. Since it’s a fairly small dataset, we can probably
use a large population since training time will still be pretty fast. We’ll evolve 20 generations unless the error falls
below 0.01. Examining the equation, it looks like the default function set of addition, subtraction, multiplication and
division will cover us. Let’s bump up the amount of mutation and subsample so that we can watch the OOB error
evolve. We’ll also increase the parsimony coefficient to keep our solutions small, since we know the truth is a pretty
simple equation:

est_gp = SymbolicRegressor(population_size=5000,
generations=20, stopping_criteria=0.01,
p_crossover=0.7, p_subtree_mutation=0.1,
p_hoist_mutation=0.05, p_point_mutation=0.1,
max_samples=0.9, verbose=1,
parsimony_coefficient=0.01, random_state=0)

est_gp.fit(X_train, y_train)

| Population Average | Best Individual |
---- ------------------------- ------------------------------------------ ----------
Gen Length Fitness Length Fitness OOB Fitness Time Left
0 38.13 458.57768152 5 0.320665972828 0.556763539274 1.28m
1 9.97 1.70232723129 5 0.320201761523 0.624787148042 57.78s
2 7.72 1.94456344674 11 0.239536660154 0.533148180489 46.35s
3 5.41 0.990156815469 7 0.235676349446 0.719906258051 37.93s
4 4.66 0.894443363616 11 0.103946413589 0.103946413589 32.20s
5 5.41 0.940242380405 11 0.060802040427 0.060802040427 28.15s
6 6.78 1.0953592564 11 0.000781474035 0.000781474035 24.85s

The evolution process stopped early as the error of the best program in the 9th generation was better than 0.01. It also
appears that the parsimony coefficient was just about right as the average length of the programs fluctuated around a
bit before settling on a pretty reasonable size. Let’s look at what our solution was:

print(est_gp._program)

sub(add(-0.999, X1), mul(sub(X1, X0), add(X0, X1)))

Interestingly, this does not have the same structure as our target function. But let’s expand the mathematics out:

𝑦 = (−0.999 +𝑋1)− ((𝑋1 −𝑋0)× (𝑋0 +𝑋1))

𝑦 = 𝑋1 − 0.999− (𝑋1𝑋0 +𝑋2
1 −𝑋2

0 −𝑋0𝑋1)

𝑦 = 𝑋2
0 −𝑋2

1 +𝑋1 − 0.999

Despite representing an interaction of 𝑋0 and 𝑋1, these terms cancel and we’re left with the (almost) exact relationship
we were seeking!
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Great, but let’s compare with some other non-linear models to see how they do:

est_tree = DecisionTreeRegressor()
est_tree.fit(X_train, y_train)
est_rf = RandomForestRegressor()
est_rf.fit(X_train, y_train)

We can plot the decision surfaces of all three to visualize each one:

y_gp = est_gp.predict(np.c_[x0.ravel(), x1.ravel()]).reshape(x0.shape)
score_gp = est_gp.score(X_test, y_test)
y_tree = est_tree.predict(np.c_[x0.ravel(), x1.ravel()]).reshape(x0.shape)
score_tree = est_tree.score(X_test, y_test)
y_rf = est_rf.predict(np.c_[x0.ravel(), x1.ravel()]).reshape(x0.shape)
score_rf = est_rf.score(X_test, y_test)

fig = plt.figure(figsize=(12, 10))

for i, (y, score, title) in enumerate([(y_truth, None, "Ground Truth"),
(y_gp, score_gp, "SymbolicRegressor"),
(y_tree, score_tree, "DecisionTreeRegressor"),
(y_rf, score_rf, "RandomForestRegressor")]):

ax = fig.add_subplot(2, 2, i+1, projection='3d')
ax.set_xlim(-1, 1)
ax.set_ylim(-1, 1)
surf = ax.plot_surface(x0, x1, y, rstride=1, cstride=1, color='green', alpha=0.5)
points = ax.scatter(X_train[:, 0], X_train[:, 1], y_train)
if score is not None:

score = ax.text(-.7, 1, .2, "$R^2 =\/ %.6f$" % score, 'x', fontsize=14)
plt.title(title)

plt.show()
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Not bad SymbolicRegressor! We were able to fit a very smooth function to the data, while the tree-based estimators
created very “blocky” decision surfaces. The Random Forest appears to have smoothed out some of the wrinkles but
in both cases the tree models have fit very well to the training data, but done worse on out-of-sample data.

We can also inspect the program that the SymbolicRegressor found:

dot_data = est_gp._program.export_graphviz()
graph = graphviz.Source(dot_data)
graph
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And check out who its parents were:

print(est_gp._program.parents)

{'method': 'Crossover',
'parent_idx': 1555,
'parent_nodes': [1, 2, 3],
'donor_idx': 78,
'donor_nodes': []}

This dictionary tells us what evolution operation was performed to get our new individual, as well as the parents from
the prior generation, and any nodes that were removed from them during, in this case, Crossover.

Plotting the parents shows how the genetic material from them combined to form our winning program:

idx = est_gp._program.parents['donor_idx']
fade_nodes = est_gp._program.parents['donor_nodes']
dot_data = est_gp._programs[-2][idx].export_graphviz(fade_nodes=fade_nodes)
graph = graphviz.Source(dot_data)
graph
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2.2 Symbolic Transformer

This example demonstrates using the SymbolicTransformer to generate new non-linear features automatically.

Let’s load up the Diabetes housing dataset and randomly shuffle it:

rng = check_random_state(0)
diabetes = load_diabetes()
perm = rng.permutation(diabetes.target.size)
diabetes.data = diabetes.data[perm]
diabetes.target = diabetes.target[perm]

We’ll use Ridge Regression for this example and train our regressor on the first 300 samples, and see how it performs
on the unseen final 200 samples. The benchmark to beat is simply Ridge running on the dataset as-is:

est = Ridge()
est.fit(diabetes.data[:300, :], diabetes.target[:300])
print(est.score(diabetes.data[300:, :], diabetes.target[300:]))

0.43405742105789413

So now we’ll train our transformer on the same first 300 samples to generate some new features. Let’s use a large
population of 2000 individuals over 20 generations. We’ll select the best 100 of these for the hall_of_fame, and then
use the least-correlated 10 as our new features. A little parsimony should control bloat, but we’ll leave the rest of the
evolution options at their defaults. The default metric='pearson' is appropriate here since we are using a linear
model as the estimator. If we were going to use a tree-based estimator, the Spearman correlation might be interesting
to try out too:

function_set = ['add', 'sub', 'mul', 'div',
'sqrt', 'log', 'abs', 'neg', 'inv',
'max', 'min']

gp = SymbolicTransformer(generations=20, population_size=2000,
hall_of_fame=100, n_components=10,

(continues on next page)
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(continued from previous page)

function_set=function_set,
parsimony_coefficient=0.0005,
max_samples=0.9, verbose=1,
random_state=0, n_jobs=3)

gp.fit(diabetes.data[:300, :], diabetes.target[:300])

We will then apply our trained transformer to the entire Diabetes dataset (remember, it still hasn’t seen the final 200
samples) and concatenate this to the original data:

gp_features = gp.transform(diabetes.data)
new_diabetes = np.hstack((diabetes.data, gp_features))

Now we train the Ridge regressor on the first 300 samples of the transformed dataset and see how it performs on the
final 200 again:

est = Ridge()
est.fit(new_diabetes[:300, :], diabetes.target[:300])
print(est.score(new_diabetes[300:, :], diabetes.target[300:]))

0.5336788517320445

Great! We have improved the 𝑅2 score by a significant margin. It looks like the linear model was able to take advantage
of some new non-linear features to fit the data even better.

2.3 Symbolic Classifier

Continuing the scikit-learn classifier comparison example to include the SymbolicClassifier we can see what types
of decision boundaries could be found using genetic programming.

As we can see, the SymbolicClassifier was able to find non-linear decision boundaries. Individual tweaks to the
function sets and other parameters to better suit each dataset may also improve the fits.

As with scikit-learn’s disclaimer, this should be taken with a grain of salt for use with real-world datasets in multi-
dimensional spaces. In order to look at that, let’s load the Wisconsin breast cancer dataset and shuffle it:

rng = check_random_state(0)
cancer = load_breast_cancer()
perm = rng.permutation(cancer.target.size)

(continues on next page)
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(continued from previous page)

cancer.data = cancer.data[perm]
cancer.target = cancer.target[perm]

We will use the base function sets and increase the parsimony in order to find a small solution to the problem, and fit
to the first 400 samples:

est = SymbolicClassifier(parsimony_coefficient=.01,
feature_names=cancer.feature_names,
random_state=1)

est.fit(cancer.data[:400], cancer.target[:400])

Testing the estimator on the remaining samples shows that it found a very good solution:

y_true = cancer.target[400:]
y_score = est.predict_proba(cancer.data[400:])[:,1]
roc_auc_score(y_true, y_score)

0.96937869822485212

We can then also visualise the solution with Graphviz:

dot_data = est._program.export_graphviz()
graph = graphviz.Source(dot_data)
graph

It is important to note that the results of this formula are passed through the sigmoid function in order to transform the
solution into class probabilities.

Next up, explore the full API reference or just skip ahead install the package!
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API REFERENCE

3.1 Symbolic Regressor

class gplearn.genetic.SymbolicRegressor(*, population_size=1000, generations=20, tournament_size=20,
stopping_criteria=0.0, const_range=(-1.0, 1.0), init_depth=(2,
6), init_method='half and half', function_set=('add', 'sub', 'mul',
'div'), metric='mean absolute error',
parsimony_coefficient=0.001, p_crossover=0.9,
p_subtree_mutation=0.01, p_hoist_mutation=0.01,
p_point_mutation=0.01, p_point_replace=0.05,
max_samples=1.0, feature_names=None, warm_start=False,
low_memory=False, n_jobs=1, verbose=0,
random_state=None)

A Genetic Programming symbolic regressor.

A symbolic regressor is an estimator that begins by building a population of naive random formulas to represent a
relationship. The formulas are represented as tree-like structures with mathematical functions being recursively
applied to variables and constants. Each successive generation of programs is then evolved from the one that
came before it by selecting the fittest individuals from the population to undergo genetic operations such as
crossover, mutation or reproduction.

Parameters

population_size
[integer, optional (default=1000)] The number of programs in each generation.

generations
[integer, optional (default=20)] The number of generations to evolve.

tournament_size
[integer, optional (default=20)] The number of programs that will compete to become part
of the next generation.

stopping_criteria
[float, optional (default=0.0)] The required metric value required in order to stop evolution
early.

const_range
[tuple of two floats, or None, optional (default=(-1., 1.))] The range of constants to include
in the formulas. If None then no constants will be included in the candidate programs.

init_depth
[tuple of two ints, optional (default=(2, 6))] The range of tree depths for the initial population
of naive formulas. Individual trees will randomly choose a maximum depth from this range.
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When combined with init_method=’half and half’ this yields the well- known ‘ramped half
and half’ initialization method.

init_method
[str, optional (default=’half and half’)]

• ‘grow’ : Nodes are chosen at random from both functions and terminals, allowing for
smaller trees than init_depth allows. Tends to grow asymmetrical trees.

• ‘full’ : Functions are chosen until the init_depth is reached, and then terminals are selected.
Tends to grow ‘bushy’ trees.

• ‘half and half’ : Trees are grown through a 50/50 mix of ‘full’ and ‘grow’, making for a
mix of tree shapes in the initial population.

function_set
[iterable, optional (default=(‘add’, ‘sub’, ‘mul’, ‘div’))] The functions to use when build-
ing and evolving programs. This iterable can include strings to indicate either individual
functions as outlined below, or you can also include your own functions as built using the
make_function factory from the functions module.

Available individual functions are:

• ‘add’ : addition, arity=2.

• ‘sub’ : subtraction, arity=2.

• ‘mul’ : multiplication, arity=2.

• ‘div’ : protected division where a denominator near-zero returns 1., arity=2.

• ‘sqrt’ : protected square root where the absolute value of the argument is used, arity=1.

• ‘log’ : protected log where the absolute value of the argument is used and a near-zero
argument returns 0., arity=1.

• ‘abs’ : absolute value, arity=1.

• ‘neg’ : negative, arity=1.

• ‘inv’ : protected inverse where a near-zero argument returns 0., arity=1.

• ‘max’ : maximum, arity=2.

• ‘min’ : minimum, arity=2.

• ‘sin’ : sine (radians), arity=1.

• ‘cos’ : cosine (radians), arity=1.

• ‘tan’ : tangent (radians), arity=1.

metric
[str, optional (default=’mean absolute error’)] The name of the raw fitness metric. Available
options include:

• ‘mean absolute error’.

• ‘mse’ for mean squared error.

• ‘rmse’ for root mean squared error.

• ‘pearson’, for Pearson’s product-moment correlation coefficient.

• ‘spearman’ for Spearman’s rank-order correlation coefficient.
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Note that ‘pearson’ and ‘spearman’ will not directly predict the target but could be useful
as value-added features in a second-step estimator. This would allow the user to generate
one engineered feature at a time, using the SymbolicTransformer would allow creation of
multiple features at once.

parsimony_coefficient
[float or “auto”, optional (default=0.001)] This constant penalizes large programs by adjust-
ing their fitness to be less favorable for selection. Larger values penalize the program more
which can control the phenomenon known as ‘bloat’. Bloat is when evolution is increasing
the size of programs without a significant increase in fitness, which is costly for computation
time and makes for a less understandable final result. This parameter may need to be tuned
over successive runs.

If “auto” the parsimony coefficient is recalculated for each generation using c = Cov(l,f)/Var(
l), where Cov(l,f) is the covariance between program size l and program fitness f in the
population, and Var(l) is the variance of program sizes.

p_crossover
[float, optional (default=0.9)] The probability of performing crossover on a tournament win-
ner. Crossover takes the winner of a tournament and selects a random subtree from it to be
replaced. A second tournament is performed to find a donor. The donor also has a subtree
selected at random and this is inserted into the original parent to form an offspring in the
next generation.

p_subtree_mutation
[float, optional (default=0.01)] The probability of performing subtree mutation on a tour-
nament winner. Subtree mutation takes the winner of a tournament and selects a random
subtree from it to be replaced. A donor subtree is generated at random and this is inserted
into the original parent to form an offspring in the next generation.

p_hoist_mutation
[float, optional (default=0.01)] The probability of performing hoist mutation on a tournament
winner. Hoist mutation takes the winner of a tournament and selects a random subtree from
it. A random subtree of that subtree is then selected and this is ‘hoisted’ into the original
subtrees location to form an offspring in the next generation. This method helps to control
bloat.

p_point_mutation
[float, optional (default=0.01)] The probability of performing point mutation on a tournament
winner. Point mutation takes the winner of a tournament and selects random nodes from it to
be replaced. Terminals are replaced by other terminals and functions are replaced by other
functions that require the same number of arguments as the original node. The resulting tree
forms an offspring in the next generation.

Note : The above genetic operation probabilities must sum to less than one. The balance of
probability is assigned to ‘reproduction’, where a tournament winner is cloned and enters the
next generation unmodified.

p_point_replace
[float, optional (default=0.05)] For point mutation only, the probability that any given node
will be mutated.

max_samples
[float, optional (default=1.0)] The fraction of samples to draw from X to evaluate each pro-
gram on.

feature_names
[list, optional (default=None)] Optional list of feature names, used purely for representa-
tions in the print operation or export_graphviz. If None, then X0, X1, etc will be used for
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representations.

warm_start
[bool, optional (default=False)] When set to True, reuse the solution of the previous call to
fit and add more generations to the evolution, otherwise, just fit a new evolution.

low_memory
[bool, optional (default=False)] When set to True, only the current generation is retained.
Parent information is discarded. For very large populations or runs with many generations,
this can result in substantial memory use reduction.

n_jobs
[integer, optional (default=1)] The number of jobs to run in parallel for fit. If -1, then the
number of jobs is set to the number of cores.

verbose
[int, optional (default=0)] Controls the verbosity of the evolution building process.

random_state
[int, RandomState instance or None, optional (default=None)] If int, random_state is the seed
used by the random number generator; If RandomState instance, random_state is the random
number generator; If None, the random number generator is the RandomState instance used
by np.random.

See also:

SymbolicTransformer

References

[1], [2]

Attributes

run_details_
[dict] Details of the evolution process. Includes the following elements:

• ‘generation’ : The generation index.

• ‘average_length’ : The average program length of the generation.

• ‘average_fitness’ : The average program fitness of the generation.

• ‘best_length’ : The length of the best program in the generation.

• ‘best_fitness’ : The fitness of the best program in the generation.

• ‘best_oob_fitness’ : The out of bag fitness of the best program in the generation (requires
max_samples < 1.0).

• ‘generation_time’ : The time it took for the generation to evolve.

fit(X, y, sample_weight=None)
Fit the Genetic Program according to X, y.

Parameters

X
[array-like, shape = [n_samples, n_features]] Training vectors, where n_samples is the
number of samples and n_features is the number of features.

y
[array-like, shape = [n_samples]] Target values.
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sample_weight
[array-like, shape = [n_samples], optional] Weights applied to individual samples.

Returns

self
[object] Returns self.

get_params(deep=True)
Get parameters for this estimator.

Parameters

deep
[bool, default=True] If True, will return the parameters for this estimator and contained
subobjects that are estimators.

Returns

params
[dict] Parameter names mapped to their values.

predict(X)
Perform regression on test vectors X.

Parameters

X
[array-like, shape = [n_samples, n_features]] Input vectors, where n_samples is the number
of samples and n_features is the number of features.

Returns

y
[array, shape = [n_samples]] Predicted values for X.

score(X, y, sample_weight=None)
Return the coefficient of determination of the prediction.

The coefficient of determination 𝑅2 is defined as (1− 𝑢
𝑣 ), where 𝑢 is the residual sum of squares ((y_true

- y_pred)** 2).sum() and 𝑣 is the total sum of squares ((y_true - y_true.mean()) ** 2).
sum(). The best possible score is 1.0 and it can be negative (because the model can be arbitrarily worse).
A constant model that always predicts the expected value of y, disregarding the input features, would get a
𝑅2 score of 0.0.

Parameters

X
[array-like of shape (n_samples, n_features)] Test samples. For some estimators this may be
a precomputed kernel matrix or a list of generic objects instead with shape (n_samples,
n_samples_fitted), where n_samples_fitted is the number of samples used in the
fitting for the estimator.

y
[array-like of shape (n_samples,) or (n_samples, n_outputs)] True values for X.

sample_weight
[array-like of shape (n_samples,), default=None] Sample weights.

Returns

score
[float] 𝑅2 of self.predict(X) wrt. y.
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Notes

The 𝑅2 score used when calling score on a regressor uses multioutput='uniform_average' from
version 0.23 to keep consistent with default value of r2_score(). This influences the score method of
all the multioutput regressors (except for MultiOutputRegressor).

set_params(**params)
Set the parameters of this estimator.

The method works on simple estimators as well as on nested objects (such as Pipeline). The latter have
parameters of the form <component>__<parameter> so that it’s possible to update each component of a
nested object.

Parameters

**params
[dict] Estimator parameters.

Returns

self
[estimator instance] Estimator instance.

3.2 Symbolic Classifier

class gplearn.genetic.SymbolicClassifier(*, population_size=1000, generations=20,
tournament_size=20, stopping_criteria=0.0,
const_range=(-1.0, 1.0), init_depth=(2, 6), init_method='half
and half', function_set=('add', 'sub', 'mul', 'div'),
transformer='sigmoid', metric='log loss',
parsimony_coefficient=0.001, p_crossover=0.9,
p_subtree_mutation=0.01, p_hoist_mutation=0.01,
p_point_mutation=0.01, p_point_replace=0.05,
max_samples=1.0, class_weight=None, feature_names=None,
warm_start=False, low_memory=False, n_jobs=1, verbose=0,
random_state=None)

A Genetic Programming symbolic classifier.

A symbolic classifier is an estimator that begins by building a population of naive random formulas to represent a
relationship. The formulas are represented as tree-like structures with mathematical functions being recursively
applied to variables and constants. Each successive generation of programs is then evolved from the one that
came before it by selecting the fittest individuals from the population to undergo genetic operations such as
crossover, mutation or reproduction.

Parameters

population_size
[integer, optional (default=500)] The number of programs in each generation.

generations
[integer, optional (default=10)] The number of generations to evolve.

tournament_size
[integer, optional (default=20)] The number of programs that will compete to become part
of the next generation.
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stopping_criteria
[float, optional (default=0.0)] The required metric value required in order to stop evolution
early.

const_range
[tuple of two floats, or None, optional (default=(-1., 1.))] The range of constants to include
in the formulas. If None then no constants will be included in the candidate programs.

init_depth
[tuple of two ints, optional (default=(2, 6))] The range of tree depths for the initial population
of naive formulas. Individual trees will randomly choose a maximum depth from this range.
When combined with init_method=’half and half’ this yields the well- known ‘ramped half
and half’ initialization method.

init_method
[str, optional (default=’half and half’)]

• ‘grow’ : Nodes are chosen at random from both functions and terminals, allowing for
smaller trees than init_depth allows. Tends to grow asymmetrical trees.

• ‘full’ : Functions are chosen until the init_depth is reached, and then terminals are selected.
Tends to grow ‘bushy’ trees.

• ‘half and half’ : Trees are grown through a 50/50 mix of ‘full’ and ‘grow’, making for a
mix of tree shapes in the initial population.

function_set
[iterable, optional (default=(‘add’, ‘sub’, ‘mul’, ‘div’))] The functions to use when build-
ing and evolving programs. This iterable can include strings to indicate either individual
functions as outlined below, or you can also include your own functions as built using the
make_function factory from the functions module.

Available individual functions are:

• ‘add’ : addition, arity=2.

• ‘sub’ : subtraction, arity=2.

• ‘mul’ : multiplication, arity=2.

• ‘div’ : protected division where a denominator near-zero returns 1., arity=2.

• ‘sqrt’ : protected square root where the absolute value of the argument is used, arity=1.

• ‘log’ : protected log where the absolute value of the argument is used and a near-zero
argument returns 0., arity=1.

• ‘abs’ : absolute value, arity=1.

• ‘neg’ : negative, arity=1.

• ‘inv’ : protected inverse where a near-zero argument returns 0., arity=1.

• ‘max’ : maximum, arity=2.

• ‘min’ : minimum, arity=2.

• ‘sin’ : sine (radians), arity=1.

• ‘cos’ : cosine (radians), arity=1.

• ‘tan’ : tangent (radians), arity=1.

transformer
[str, optional (default=’sigmoid’)] The name of the function through which the raw decision
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function is passed. This function will transform the raw decision function into probabilities
of each class.

This can also be replaced by your own functions as built using the make_function factory
from the functions module.

metric
[str, optional (default=’log loss’)] The name of the raw fitness metric. Available options
include:

• ‘log loss’ aka binary cross-entropy loss.

parsimony_coefficient
[float or “auto”, optional (default=0.001)] This constant penalizes large programs by adjust-
ing their fitness to be less favorable for selection. Larger values penalize the program more
which can control the phenomenon known as ‘bloat’. Bloat is when evolution is increasing
the size of programs without a significant increase in fitness, which is costly for computation
time and makes for a less understandable final result. This parameter may need to be tuned
over successive runs.

If “auto” the parsimony coefficient is recalculated for each generation using c = Cov(l,f)/Var(
l), where Cov(l,f) is the covariance between program size l and program fitness f in the
population, and Var(l) is the variance of program sizes.

p_crossover
[float, optional (default=0.9)] The probability of performing crossover on a tournament win-
ner. Crossover takes the winner of a tournament and selects a random subtree from it to be
replaced. A second tournament is performed to find a donor. The donor also has a subtree
selected at random and this is inserted into the original parent to form an offspring in the
next generation.

p_subtree_mutation
[float, optional (default=0.01)] The probability of performing subtree mutation on a tour-
nament winner. Subtree mutation takes the winner of a tournament and selects a random
subtree from it to be replaced. A donor subtree is generated at random and this is inserted
into the original parent to form an offspring in the next generation.

p_hoist_mutation
[float, optional (default=0.01)] The probability of performing hoist mutation on a tournament
winner. Hoist mutation takes the winner of a tournament and selects a random subtree from
it. A random subtree of that subtree is then selected and this is ‘hoisted’ into the original
subtrees location to form an offspring in the next generation. This method helps to control
bloat.

p_point_mutation
[float, optional (default=0.01)] The probability of performing point mutation on a tournament
winner. Point mutation takes the winner of a tournament and selects random nodes from it to
be replaced. Terminals are replaced by other terminals and functions are replaced by other
functions that require the same number of arguments as the original node. The resulting tree
forms an offspring in the next generation.

Note : The above genetic operation probabilities must sum to less than one. The balance of
probability is assigned to ‘reproduction’, where a tournament winner is cloned and enters the
next generation unmodified.

p_point_replace
[float, optional (default=0.05)] For point mutation only, the probability that any given node
will be mutated.
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max_samples
[float, optional (default=1.0)] The fraction of samples to draw from X to evaluate each pro-
gram on.

class_weight
[dict, ‘balanced’ or None, optional (default=None)] Weights associated with classes in the
form {class_label: weight}. If not given, all classes are supposed to have weight one.

The “balanced” mode uses the values of y to automatically adjust weights inversely pro-
portional to class frequencies in the input data as n_samples / (n_classes * np.
bincount(y))

feature_names
[list, optional (default=None)] Optional list of feature names, used purely for representa-
tions in the print operation or export_graphviz. If None, then X0, X1, etc will be used for
representations.

warm_start
[bool, optional (default=False)] When set to True, reuse the solution of the previous call to
fit and add more generations to the evolution, otherwise, just fit a new evolution.

low_memory
[bool, optional (default=False)] When set to True, only the current generation is retained.
Parent information is discarded. For very large populations or runs with many generations,
this can result in substantial memory use reduction.

n_jobs
[integer, optional (default=1)] The number of jobs to run in parallel for fit. If -1, then the
number of jobs is set to the number of cores.

verbose
[int, optional (default=0)] Controls the verbosity of the evolution building process.

random_state
[int, RandomState instance or None, optional (default=None)] If int, random_state is the seed
used by the random number generator; If RandomState instance, random_state is the random
number generator; If None, the random number generator is the RandomState instance used
by np.random.

See also:

SymbolicTransformer

References

[1], [2]

Attributes

run_details_
[dict] Details of the evolution process. Includes the following elements:

• ‘generation’ : The generation index.

• ‘average_length’ : The average program length of the generation.

• ‘average_fitness’ : The average program fitness of the generation.

• ‘best_length’ : The length of the best program in the generation.

• ‘best_fitness’ : The fitness of the best program in the generation.
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• ‘best_oob_fitness’ : The out of bag fitness of the best program in the generation (requires
max_samples < 1.0).

• ‘generation_time’ : The time it took for the generation to evolve.

fit(X, y, sample_weight=None)
Fit the Genetic Program according to X, y.

Parameters

X
[array-like, shape = [n_samples, n_features]] Training vectors, where n_samples is the
number of samples and n_features is the number of features.

y
[array-like, shape = [n_samples]] Target values.

sample_weight
[array-like, shape = [n_samples], optional] Weights applied to individual samples.

Returns

self
[object] Returns self.

get_params(deep=True)
Get parameters for this estimator.

Parameters

deep
[bool, default=True] If True, will return the parameters for this estimator and contained
subobjects that are estimators.

Returns

params
[dict] Parameter names mapped to their values.

predict(X)
Predict classes on test vectors X.

Parameters

X
[array-like, shape = [n_samples, n_features]] Input vectors, where n_samples is the number
of samples and n_features is the number of features.

Returns

y
[array, shape = [n_samples,]] The predicted classes of the input samples.

predict_proba(X)
Predict probabilities on test vectors X.

Parameters

X
[array-like, shape = [n_samples, n_features]] Input vectors, where n_samples is the number
of samples and n_features is the number of features.

Returns

30 Chapter 3. API reference



gplearn Documentation, Release 0.4.2

proba
[array, shape = [n_samples, n_classes]] The class probabilities of the input samples. The
order of the classes corresponds to that in the attribute classes_.

score(X, y, sample_weight=None)
Return the mean accuracy on the given test data and labels.

In multi-label classification, this is the subset accuracy which is a harsh metric since you require for each
sample that each label set be correctly predicted.

Parameters

X
[array-like of shape (n_samples, n_features)] Test samples.

y
[array-like of shape (n_samples,) or (n_samples, n_outputs)] True labels for X.

sample_weight
[array-like of shape (n_samples,), default=None] Sample weights.

Returns

score
[float] Mean accuracy of self.predict(X) wrt. y.

set_params(**params)
Set the parameters of this estimator.

The method works on simple estimators as well as on nested objects (such as Pipeline). The latter have
parameters of the form <component>__<parameter> so that it’s possible to update each component of a
nested object.

Parameters

**params
[dict] Estimator parameters.

Returns

self
[estimator instance] Estimator instance.

3.3 Symbolic Transformer

class gplearn.genetic.SymbolicTransformer(*, population_size=1000, hall_of_fame=100,
n_components=10, generations=20, tournament_size=20,
stopping_criteria=1.0, const_range=(-1.0, 1.0),
init_depth=(2, 6), init_method='half and half',
function_set=('add', 'sub', 'mul', 'div'), metric='pearson',
parsimony_coefficient=0.001, p_crossover=0.9,
p_subtree_mutation=0.01, p_hoist_mutation=0.01,
p_point_mutation=0.01, p_point_replace=0.05,
max_samples=1.0, feature_names=None, warm_start=False,
low_memory=False, n_jobs=1, verbose=0,
random_state=None)

A Genetic Programming symbolic transformer.
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A symbolic transformer is a supervised transformer that begins by building a population of naive random formulas
to represent a relationship. The formulas are represented as tree-like structures with mathematical functions being
recursively applied to variables and constants. Each successive generation of programs is then evolved from the
one that came before it by selecting the fittest individuals from the population to undergo genetic operations such
as crossover, mutation or reproduction. The final population is searched for the fittest individuals with the least
correlation to one another.

Parameters

population_size
[integer, optional (default=1000)] The number of programs in each generation.

hall_of_fame
[integer, or None, optional (default=100)] The number of fittest programs to compare from
when finding the least-correlated individuals for the n_components. If None, the entire final
generation will be used.

n_components
[integer, or None, optional (default=10)] The number of best programs to return after search-
ing the hall_of_fame for the least-correlated individuals. If None, the entire hall_of_fame
will be used.

generations
[integer, optional (default=20)] The number of generations to evolve.

tournament_size
[integer, optional (default=20)] The number of programs that will compete to become part
of the next generation.

stopping_criteria
[float, optional (default=1.0)] The required metric value required in order to stop evolution
early.

const_range
[tuple of two floats, or None, optional (default=(-1., 1.))] The range of constants to include
in the formulas. If None then no constants will be included in the candidate programs.

init_depth
[tuple of two ints, optional (default=(2, 6))] The range of tree depths for the initial population
of naive formulas. Individual trees will randomly choose a maximum depth from this range.
When combined with init_method=’half and half’ this yields the well- known ‘ramped half
and half’ initialization method.

init_method
[str, optional (default=’half and half’)]

• ‘grow’ : Nodes are chosen at random from both functions and terminals, allowing for
smaller trees than init_depth allows. Tends to grow asymmetrical trees.

• ‘full’ : Functions are chosen until the init_depth is reached, and then terminals are selected.
Tends to grow ‘bushy’ trees.

• ‘half and half’ : Trees are grown through a 50/50 mix of ‘full’ and ‘grow’, making for a
mix of tree shapes in the initial population.

function_set
[iterable, optional (default=(‘add’, ‘sub’, ‘mul’, ‘div’))] The functions to use when build-
ing and evolving programs. This iterable can include strings to indicate either individual
functions as outlined below, or you can also include your own functions as built using the
make_function factory from the functions module.
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Available individual functions are:

• ‘add’ : addition, arity=2.

• ‘sub’ : subtraction, arity=2.

• ‘mul’ : multiplication, arity=2.

• ‘div’ : protected division where a denominator near-zero returns 1., arity=2.

• ‘sqrt’ : protected square root where the absolute value of the argument is used, arity=1.

• ‘log’ : protected log where the absolute value of the argument is used and a near-zero
argument returns 0., arity=1.

• ‘abs’ : absolute value, arity=1.

• ‘neg’ : negative, arity=1.

• ‘inv’ : protected inverse where a near-zero argument returns 0., arity=1.

• ‘max’ : maximum, arity=2.

• ‘min’ : minimum, arity=2.

• ‘sin’ : sine (radians), arity=1.

• ‘cos’ : cosine (radians), arity=1.

• ‘tan’ : tangent (radians), arity=1.

metric
[str, optional (default=’pearson’)] The name of the raw fitness metric. Available options
include:

• ‘pearson’, for Pearson’s product-moment correlation coefficient.

• ‘spearman’ for Spearman’s rank-order correlation coefficient.

parsimony_coefficient
[float or “auto”, optional (default=0.001)] This constant penalizes large programs by adjust-
ing their fitness to be less favorable for selection. Larger values penalize the program more
which can control the phenomenon known as ‘bloat’. Bloat is when evolution is increasing
the size of programs without a significant increase in fitness, which is costly for computation
time and makes for a less understandable final result. This parameter may need to be tuned
over successive runs.

If “auto” the parsimony coefficient is recalculated for each generation using c = Cov(l,f)/Var(
l), where Cov(l,f) is the covariance between program size l and program fitness f in the
population, and Var(l) is the variance of program sizes.

p_crossover
[float, optional (default=0.9)] The probability of performing crossover on a tournament win-
ner. Crossover takes the winner of a tournament and selects a random subtree from it to be
replaced. A second tournament is performed to find a donor. The donor also has a subtree
selected at random and this is inserted into the original parent to form an offspring in the
next generation.

p_subtree_mutation
[float, optional (default=0.01)] The probability of performing subtree mutation on a tour-
nament winner. Subtree mutation takes the winner of a tournament and selects a random
subtree from it to be replaced. A donor subtree is generated at random and this is inserted
into the original parent to form an offspring in the next generation.
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p_hoist_mutation
[float, optional (default=0.01)] The probability of performing hoist mutation on a tournament
winner. Hoist mutation takes the winner of a tournament and selects a random subtree from
it. A random subtree of that subtree is then selected and this is ‘hoisted’ into the original
subtrees location to form an offspring in the next generation. This method helps to control
bloat.

p_point_mutation
[float, optional (default=0.01)] The probability of performing point mutation on a tournament
winner. Point mutation takes the winner of a tournament and selects random nodes from it to
be replaced. Terminals are replaced by other terminals and functions are replaced by other
functions that require the same number of arguments as the original node. The resulting tree
forms an offspring in the next generation.

Note : The above genetic operation probabilities must sum to less than one. The balance of
probability is assigned to ‘reproduction’, where a tournament winner is cloned and enters the
next generation unmodified.

p_point_replace
[float, optional (default=0.05)] For point mutation only, the probability that any given node
will be mutated.

max_samples
[float, optional (default=1.0)] The fraction of samples to draw from X to evaluate each pro-
gram on.

feature_names
[list, optional (default=None)] Optional list of feature names, used purely for representa-
tions in the print operation or export_graphviz. If None, then X0, X1, etc will be used for
representations.

warm_start
[bool, optional (default=False)] When set to True, reuse the solution of the previous call to
fit and add more generations to the evolution, otherwise, just fit a new evolution.

low_memory
[bool, optional (default=False)] When set to True, only the current generation is retained.
Parent information is discarded. For very large populations or runs with many generations,
this can result in substantial memory use reduction.

n_jobs
[integer, optional (default=1)] The number of jobs to run in parallel for fit. If -1, then the
number of jobs is set to the number of cores.

verbose
[int, optional (default=0)] Controls the verbosity of the evolution building process.

random_state
[int, RandomState instance or None, optional (default=None)] If int, random_state is the seed
used by the random number generator; If RandomState instance, random_state is the random
number generator; If None, the random number generator is the RandomState instance used
by np.random.

See also:

SymbolicRegressor
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Attributes

run_details_
[dict] Details of the evolution process. Includes the following elements:

• ‘generation’ : The generation index.

• ‘average_length’ : The average program length of the generation.

• ‘average_fitness’ : The average program fitness of the generation.

• ‘best_length’ : The length of the best program in the generation.

• ‘best_fitness’ : The fitness of the best program in the generation.

• ‘best_oob_fitness’ : The out of bag fitness of the best program in the generation (requires
max_samples < 1.0).

• ‘generation_time’ : The time it took for the generation to evolve.

fit(X, y, sample_weight=None)
Fit the Genetic Program according to X, y.

Parameters

X
[array-like, shape = [n_samples, n_features]] Training vectors, where n_samples is the
number of samples and n_features is the number of features.

y
[array-like, shape = [n_samples]] Target values.

sample_weight
[array-like, shape = [n_samples], optional] Weights applied to individual samples.

Returns

self
[object] Returns self.

fit_transform(X, y, sample_weight=None)
Fit to data, then transform it.

Parameters

X
[array-like, shape = [n_samples, n_features]] Training vectors, where n_samples is the
number of samples and n_features is the number of features.

y
[array-like, shape = [n_samples]] Target values.

sample_weight
[array-like, shape = [n_samples], optional] Weights applied to individual samples.

Returns

X_new
[array-like, shape = [n_samples, n_components]] Transformed array.
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get_params(deep=True)
Get parameters for this estimator.

Parameters

deep
[bool, default=True] If True, will return the parameters for this estimator and contained
subobjects that are estimators.

Returns

params
[dict] Parameter names mapped to their values.

set_params(**params)
Set the parameters of this estimator.

The method works on simple estimators as well as on nested objects (such as Pipeline). The latter have
parameters of the form <component>__<parameter> so that it’s possible to update each component of a
nested object.

Parameters

**params
[dict] Estimator parameters.

Returns

self
[estimator instance] Estimator instance.

transform(X)
Transform X according to the fitted transformer.

Parameters

X
[array-like, shape = [n_samples, n_features]] Input vectors, where n_samples is the number
of samples and n_features is the number of features.

Returns

X_new
[array-like, shape = [n_samples, n_components]] Transformed array.

3.4 User-Defined Functions

gplearn.functions.make_function(*, function, name, arity, wrap=True)
Make a function node, a representation of a mathematical relationship.

This factory function creates a function node, one of the core nodes in any program. The resulting object is able to
be called with NumPy vectorized arguments and return a resulting vector based on a mathematical relationship.

Parameters

function
[callable] A function with signature function(x1, *args) that returns a Numpy array of the
same shape as its arguments.
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name
[str] The name for the function as it should be represented in the program and its visualiza-
tions.

arity
[int] The number of arguments that the function takes.

wrap
[bool, optional (default=True)] When running in parallel, pickling of custom functions is not
supported by Python’s default pickler. This option will wrap the function using cloudpickle
allowing you to pickle your solution, but the evolution may run slightly more slowly. If
you are running single-threaded in an interactive Python session or have no need to save the
model, set to False for faster runs.

3.5 User-Defined Fitness Metrics

gplearn.fitness.make_fitness(*, function, greater_is_better, wrap=True)
Make a fitness measure, a metric scoring the quality of a program’s fit.

This factory function creates a fitness measure object which measures the quality of a program’s fit and thus its
likelihood to undergo genetic operations into the next generation. The resulting object is able to be called with
NumPy vectorized arguments and return a resulting floating point score quantifying the quality of the program’s
representation of the true relationship.

Parameters

function
[callable] A function with signature function(y, y_pred, sample_weight) that returns a float-
ing point number. Where y is the input target y vector, y_pred is the predicted values from
the genetic program, and sample_weight is the sample_weight vector.

greater_is_better
[bool] Whether a higher value from function indicates a better fit. In general this would be
False for metrics indicating the magnitude of the error, and True for metrics indicating the
quality of fit.

wrap
[bool, optional (default=True)] When running in parallel, pickling of custom metrics is not
supported by Python’s default pickler. This option will wrap the function using cloudpickle
allowing you to pickle your solution, but the evolution may run slightly more slowly. If
you are running single-threaded in an interactive Python session or have no need to save the
model, set to False for faster runs.
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CHAPTER

FOUR

ADVANCED USE

4.1 Introspecting Programs

If you wish to learn more about how the evolution process came to the final solution, gplearn provides several means
to examine the best programs and their parents. Most of these methods are illustrated in the examples section.

Each of SymbolicRegressor, SymbolicClassifier and SymbolicTransformer overload the print function to
output a LISP-style flattened tree representation of the program. Simply print(est) the fitted estimator and the
program will be output to your session.

If you would like to see more details about the final programs, you can access the underlying _Program objects which
contains several attributes and methods that can yield more information about them.

SymbolicRegressor and SymbolicClassifier have a private attribute _program which is a single _Program
object that was the fittest program found in the final generation of the evolution.

SymbolicTransformer on the other hand has a private attribute _best_programs which is a list of _Program ob-
jects of length n_components being the least-correlated and fittest programs found in the final generation of the evo-
lution. SymbolicTransformer is also iterable so you can loop through the estimator itself to access each underlying
_Program object.

Each _Program object can also be printed as with the estimator themselves to get a readable representation of the
programs. They also have several attributes that you can use to further understand the programs:

• raw_fitness_ : The raw fitness of the individual program.

• fitness_ : The penalized fitness of the individual program.

• oob_fitness_ : The out-of-bag raw fitness of the individual program for the held-out samples. Only present
when sub-sampling was used in the estimator by specifying max_samples < 1.0.

• depth_ : The maximum depth of the program tree.

• length_ : The number of functions and terminals in the program.

For example with a SymbolicTransformer:

for program in est_gp:
print(program)
print(program.raw_fitness_)

div(div(X11, X12), X10)
0.840099070652
sub(div(mul(X4, X12), div(X9, X9)), sub(div(X11, X12), add(X12, X0)))
0.814627147552

Or if you want to access the individual programs:
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print(est_gp._best_programs[0])

div(div(X11, X12), X10)

And for a SymbolicRegressor:

print(est_gp)
print(est_gp._program)
print(est_gp._program.raw_fitness_)

add(sub(add(X5, div(X5, 0.388)), X0), div(add(X5, X10), X12))
add(sub(add(X5, div(X5, 0.388)), X0), div(add(X5, X10), X12))
4.88966783112

You can also plot the programs as a program tree using Graphviz via the export_graphvizmethod of the _Program
objects. In a Jupyter notebook this is easy using the pydotplus package:

from IPython.display import Image
import pydotplus
graph = est_gp._program.export_graphviz()
graph = pydotplus.graphviz.graph_from_dot_data(graph)
Image(graph.create_png())

This assumes you are satisfied with only seeing the final results, but the relevant programs that led to the final solutions
are still retained in the estimator’s _programs attribute. This object is a list of lists of all of the _Program objects
that were involved in the evolution of the solution. The first entry in the outer list is the original naive generation of
programs while the last entry is the final generation in which the solutions were found.

Note that any programs in earlier generations that were discarded through the selection process are replaced with None
objects to conserve memory.

Each of the programs in the final solution and the generations that preceded them have a attribute called parents.
Except for the naive programs from the initial population who have a parents value of None, this dictionary contains
information about how that program was evolved. Its contents differ depending on the genetic operation that was
performed on its parents to yield that program:

• Crossover:

– ‘method’: ‘Crossover’

– ‘parent_idx’: The index of the parent program in the previous generation.

– ‘parent_nodes’: The indices of the nodes in the subtree in the parent program that was replaced.

– ‘donor_idx’: The index of the donor program in the previous generation.

– ‘donor_nodes’: The indices of the nodes in the subtree in the donor program that was donated to the
parent.

• Subtree Mutation:

– ‘method’: ‘Subtree Mutation’

– ‘parent_idx’: The index of the parent program in the previous generation.

– ‘parent_nodes’: The indices of the nodes in the subtree in the parent program that was replaced.

• Hoist Mutation:

– ‘method’: ‘Hoist Mutation’
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– ‘parent_idx’: The index of the parent program in the previous generation.

– ‘parent_nodes’: The indices of the nodes in the parent program that were removed.

• Point Mutation:

– ‘method’: ‘Point Mutation’

– ‘parent_idx’: The index of the parent program in the previous generation.

– ‘parent_nodes’: The indices of the nodes in the parent program that were replaced.

• Reproduction:

– ‘method’: ‘Reproduction’

– ‘parent_idx’: The index of the parent program in the previous generation.

– ‘parent_nodes’: An empty list as nothing was changed.

The export_graphviz also has an optional parameter fade_nodes which can take a list of nodes that should be
shown as being altered in the visualization. For example if the best program had this parent:

print(est_gp._program.parents)

{'parent_idx': 75, 'parent_nodes': [1, 10], 'method': 'Point Mutation'}

You could plot its parent with the affected nodes indicated using:

idx = est_gp._program.parents['parent_idx']
fade_nodes = est_gp._program.parents['parent_nodes']
print(est_gp._programs[-2][idx])
graph = est_gp._programs[-2][idx].export_graphviz(fade_nodes=fade_nodes)
graph = pydotplus.graphviz.graph_from_dot_data(graph)
Image(graph.create_png())

4.2 Running Evolution in Parallel

It is easy to run your evolution parallel. All you need to do is to change the n_jobs parameter in SymbolicRegressor,
SymbolicClassifier or SymbolicTransformer. Whether this will reduce your run times depends a great deal upon
the problem you are working on.

Genetic programming is inherently an iterative process. One generation undergoes genetic operations with other mem-
bers of the same generation in order to produce the next. When ran in parallel, gplearn splits the genetic operations
into equal-sized batches that run in parallel, but the generations themselves must be completed before the next step can
begin. For example, with three threads and three generations the processing would look like this:

Until all of the computation in Threads 1, 2 & 3 have completed, the next generation must wait for them all to complete.
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Spinning up all these extra processes in parallel is not free. There is a substantial overhead in running gplearn in parallel
and because of the iterative nature of evolution one should test whether there is any advantage from doing so for your
problem. In many cases the overhead of creating extra processes will exceed the savings of running in parallel.

In general large populations or large programs can benefit from parallel processing. If you have small populations and
keep your programs small however, you may actually have your runs go faster on a single thread!

4.3 Exporting

If you want to save your program for later use, you can use the pickle library to achieve this:

import pickle

est = SymbolicRegressor()
est.fit(X_train, y_train)

Optionally, you can reduce the file size of the pickled object by removing the evolution information contained within
the _programs attribute. Note though that while the resulting estimator will be able to do predictions, doing this will
remove the ability to use warm_start to continue the evolution, or inspection of the final solution’s parents:

delattr(est, '_programs')

Then simply dump your model to a file:

with open('gp_model.pkl', 'wb') as f:
pickle.dump(est, f)

You can then load it at another date easily:

with open('gp_model.pkl', 'rb') as f:
est = pickle.load(f)

And use it as if it was the Python session where you originally trained the model.

4.4 Custom Functions

This example demonstrates modifying the function set with your own user-defined functions using the functions.
make_function() factory function.

First you need to define some function which will return a numpy array of the correct shape. Most numpy operations
will automatically do this. The factory will perform some basic checks on your function to ensure it complies with this.
The function must also protect against zero division and invalid floating point operations (such as the log of a negative
number).

For this example we will implement a logical operation where two arguments are compared, and if the first one is larger,
return a third value, otherwise return a fourth value:

def _logical(x1, x2, x3, x4):
return np.where(x1 > x2, x3, x4)

To make this into a gplearn compatible function, we use the factory where we must give it a name for display purposes
and declare the arity of the function which must match the number of arguments that your function expects:
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logical = make_function(function=_logical,
name='logical',
arity=4)

Due to the way that the default Python pickler works, by default gplearn wraps your function to be serialised with
cloudpickle. This can mean your evolution will run slightly more slowly. If you have no need to export your model
after the run, or you are running single-threaded in an interactive Python session you may achieve a faster evolution
time by setting the optional parameter wrap=False in functions.make_function().

This can then be added to a gplearn estimator like so:

gp = SymbolicTransformer(function_set=['add', 'sub', 'mul', 'div', logical])

Note that custom functions should be specified as the function object name (ie. with no quotes), while built-in
functions use the name of the function as a string.

After fitting, you will see some of your programs will have used your own customized functions, for example:

add(X3, logical(div(X5, sub(X5, X5)), add(X9, -0.621), X8, X4))

In other mathematical relationships, it may be necessary to ensure the function has closure. This means that the function
will always return a valid floating point result. Using np.where, the user can protect against invalid operations and
substitute problematic values with a default such as 0 or 1. One example is the built-in protected division function
where infinite values resulting by divide by zero are replaced by 1:
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def _protected_division(x1, x2):
with np.errstate(divide='ignore', invalid='ignore'):

return np.where(np.abs(x2) > 0.001, np.divide(x1, x2), 1.)

Or a custom function where floating-point overflow is protected in an exponential function:

def _protected_exponent(x1):
with np.errstate(over='ignore'):

return np.where(np.abs(x1) < 100, np.exp(x), 0.)

For further information on the types of errors that numpy can encounter and what you will need to protect against in
your own custom functions, see here.

4.5 Custom Fitness

You can easily create your own fitness measure to have your programs evolve to optimize whatever metric you need.
This is done using the fitness.make_fitness() factory function. Let’s say we wish to measure our programs using
MAPE (mean absolute percentage error). First we would need to implement a function that returns this value. The
function must take the arguments y (the actual target values), y_pred (the predicted values from the program) and w
(the weights to apply to each sample) to work. For MAPE, a possible solution is:

def _mape(y, y_pred, w):
"""Calculate the mean absolute percentage error."""
diffs = np.abs(np.divide((np.maximum(0.001, y) - np.maximum(0.001, y_pred)),

np.maximum(0.001, y)))
return 100. * np.average(diffs, weights=w)

Division by zero must be protected for a metric like MAPE as it is generally used for cases where the target is positive
and non-zero (like forecasting demand). We need to keep in mind that the programs begin by being totally naive, so a
negative return value is possible. The np.maximum function will protect against these cases, though you may wish to
treat this differently depending on your specific use case.

We then create a fitness measure for use in our evolution by using the fitness.make_fitness() factory function as
follows:

mape = make_fitness(function=_mape,
greater_is_better=False)

This fitness measure can now be used to evolve a program that optimizes for your specific needs by passing the new
fitness object to the metric parameter when creating an estimator:

est = SymbolicRegressor(metric=mape, verbose=1)

As with custom functions, by default gplearn wraps your fitness metric to be serialised with cloudpickle. If you have
no need to export your model after the run, or you are running single-threaded in an interactive Python session you may
achieve a faster evolution time by setting the optional parameter wrap=False in fitness.make_fitness().
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4.6 Continuing Evolution

If you are evolving a lot of generations in your training session, but find that you need to keep evolving more, you
can use the warm_start parameter in both SymbolicRegressor and SymbolicTransformer to continue evolution
beyond your original estimates. To do so, start evolution as usual:

est = SymbolicRegressor(generations=10)
est.fit(X, y)

If you then need to add further generations, simply change the generations and warm_start attributes and fit again:

est.set_params(generations=20, warm_start=True)
est.fit(X, y)

Evolution will then continue for a further 10 generations without losing the programs that had been previously trained.
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FIVE

INSTALLATION

gplearn requires a recent version of scikit-learn (which requires numpy and scipy). So first you will need to follow
their installation instructions to get the dependencies.

Now that you have scikit-learn installed, you can install gplearn using pip:

pip install gplearn

Or if you wish to install to the home directory:

pip install --user gplearn

For the latest development version, first get the source from github:

git clone https://github.com/trevorstephens/gplearn.git

Then navigate into the local gplearn directory and simply run:

python setup.py install

or:

python setup.py install --user

and you’re done!
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CHAPTER

SIX

CONTRIBUTING

gplearn welcomes your contributions! Whether it is a bug report, bug fix, new feature or documentation enhance-
ments, please help to improve the project!

In general, please follow the scikit-learn contribution guidelines for how to contribute to an open-source project.

If you would like to open a bug report, please open one here. Please try to provide a Short, Self Contained, Example
so that the root cause can be pinned down and corrected more easily.

If you would like to contribute a new feature or fix an existing bug, the basic workflow to follow (as detailed more at
the scikit-learn link above) is:

• Open an issue with what you would like to contribute to the project and its merits. Some features may be out of
scope for gplearn, so be sure to get the go-ahead before working on something that is outside of the project’s
goals.

• Fork the gplearn repository, clone it locally, and create your new feature branch.

• Make your code changes on the branch, commit them, and push to your fork.

• Open a pull request.

Please ensure that:

• Only data-dependent arguments should be passed to the fit/transform methods (X, y, sample_weight), and
conversely, no data should be passed to the estimator initialization.

• No input validation occurs before fitting the estimator.

• Any new feature has great test coverage.

• Any new feature is well documented with numpy-style docstrings & an example, if appropriate and illustrative.

• Any bug fix has regression tests.

• Comply with PEP8.

Currently gplearn uses GitHub workflows for testing, Coveralls for code coverage reports, and Codacy for code quality
checks. These applications should automatically run on your new pull request to give you guidance on any problems
in the new code.
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CHAPTER

SEVEN

RELEASE HISTORY

7.1 Version 0.4.2 - 3 May 2022

• Require keyword only arguments for all public methods and functions to comply with scikit-learn SLEP009.

• Replace n_features_ attribute with n_features_in_ to comply with scikit-learn SLEP010.

• Update test suite to ensure compatibility with scikit-learn. scikit-learn 1.0.2 or newer will be required
due to recent changes in their testing requirements. Also requiring joblib to 1.0.0 or newer to align with next
release of scikit-learn.

• Added the class_weight parameter to genetic.SymbolicClassifier allowing users to easily compensate for
imbalanced datasets.

7.2 Version 0.4.1 - 1 Jun 2019

• Fixed a bug with multi-processing and custom functions, allowing pickling of models with custom functions,
fitness metrics or classifier transformers. joblib 0.13.0 or newer required in order to take advantage of this
release in order to wrap functions for pickling saved models.

7.3 Version 0.4.0 - 23 Apr 2019

• Added the genetic.SymbolicClassifier to use symbolic regression to solve binary classification problems.
This passes the outputs of a program through a sigmoid function in order to translate the result into a probability
of either class.

• Allow users to express feature names as strings rather than X0, X1, etc. Graphviz and print() output
can now be customized by setting feature_names=[...] in genetic.SymbolicRegressor or genetic.
SymbolicTransformer.

• Allow users to exclude constants from their programs by setting const_range=None in genetic.
SymbolicRegressor or genetic.SymbolicTransformer.

• Record details (similar to the verbose output) of the evolution in the estimator attribute run_details_ dict in
genetic.SymbolicRegressor and genetic.SymbolicTransformer.

• Pearson and Spearman correlation coefficients added as first-class metrics to genetic.SymbolicRegressor.
These metrics allow for evolution of value-added features for second-stage estimators.

• Added a low_memory parameter in genetic.SymbolicRegressor and genetic.SymbolicTransformer
which can reduce memory use for cases where there are large populations or many generations by removing
early generation program information. By Bartol Karuza and wulfihm.
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• Drop support for Python 2.7 and Python 3.4 to ensure compatibility with scikit-learn. scikit-learn 0.20.0
or newer will also be required due to recent changes in their testing suite. Additionally joblib 0.11 or newer will
be required due to scikit-learn devendoring it.

7.4 Version 0.3.0 - 23 Nov 2017

• Fixed two bugs in genetic.SymbolicTransformer where the final solution selection logic was incorrect and
suboptimal. This fix will change the solutions from all previous versions of gplearn. Thanks to iblasi for diag-
nosing the problem and helping craft the solution.

• Fixed bug in genetic.SymbolicRegressor where a custom fitness measure was defined in fitness.
make_fitness() with the parameter greater_is_better=True. This was ignored during final solution selection.
This change will alter the results from previous releases where greater_is_better=True was set in a custom fitness
measure. By sun ao.

• Increase minimum required version of scikit-learn to 0.18.1. This allows streamlining the test suite and
removal of many utilities to reduce future technical debt. Please note that due to this change, previous versions
may have different results due to a change in random sampling noted here.

• Drop support for Python 2.6 and add support for Python 3.5 and 3.6 in order to support the latest release of
scikit-learn 0.19 and avoid future test failures. By hugovk.

7.5 Version 0.2.0 - 30 Mar 2017

• Allow more generations to be evolved on top of those already trained using a previous call to fit. The genetic.
SymbolicRegressor and genetic.SymbolicTransformer classes now support the warm_start parameter
which, when set to True, reuse the solution of the previous call to fit and add more generations to the evolution.

• Allow users to define their own fitness measures. Supported by the fitness.make_fitness() factory func-
tion. Using this a user may define any metric by which to measure the fitness of a program to optimize any
problem. This also required modifying the API slightly with the deprecation of the 'rmsle' error measure for
the genetic.SymbolicRegressor.

• Allow users to define their own functions for use in genetic programs. Supported by the functions.
make_function() factory function. Using this a user may define any mathematical relationship with any
number of arguments and grow totally customized programs. This also required modifying the API with
the deprecation of the 'comparison', 'transformer' and 'trigonometric' arguments to the genetic.
SymbolicRegressor and genetic.SymbolicTransformer classes in favor of the new function_setwhere
any combination of preset and user-defined functions can be supplied. To restore previous behavior initialize
the estimator with function_set=['add2', 'sub2', 'mul2', 'div2', 'sqrt1', 'log1', 'abs1',
'neg1', 'inv1', 'max2', 'min2'].

• Reduce memory consumption for large datasets, large populations or many generations. Indices for in-
sample/out-of-sample fitness calculations are now generated on demand rather than being stored in the program
objects which reduces the size significantly for large datasets. Additionally “irrelevant” programs from earlier
generations are removed if they did not contribute to the current population through genetic operations. This
reduces the number of programs stored in the estimator which helps for large populations, high number of gen-
erations, as well as for runs with significant bloat.
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7.6 Version 0.1.0 - 6 May 2015

• Initial public release supporting symbolic regression tasks through the genetic.SymbolicRegressor class
for regression problems and the genetic.SymbolicTransformer class for automated feature engineering.
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